Cosine and Gaussian transforms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Cosine and Sine Transforms

The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing – are introduced and their main properties and possible applications are discussed.

متن کامل

Single Image Face Recognition Using Laplacian of Gaussian and Discrete Cosine Transforms

This paper presents a single image face recognition approach called Laplacian of Gaussian (LOG) and Discrete Cosine Transform (DCT). The proposed concept highlights a major concerned area of face recognition i.e., single image per person problem where the availability of images is limited to one at training side. To address the problem, the paper makes use of filtration and transforms property ...

متن کامل

The discrete fractional cosine and sine transforms

This paper is concerned with the definitions of the discrete fractional cosine transform (DFRCT) and the discrete fractional sine transform (DFRST). The definitions of DFRCT and DFRST are based on the eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete fractional Fourier transform (DFRFT); the eigenvalue and eigenvector relationships between the DFRCT, DFRS...

متن کامل

Fractional cosine, sine, and Hartley transforms

In previous papers, the Fourier transform (FT) has been generalized into the fractional Fourier transform (FRFT), the linear canonical transform (LCT), and the simplified fractional Fourier transform (SFRFT). Because the cosine, sine, and Hartley transforms are very similar to the FT, it is reasonable to think they can also be generalized by the similar way. In this paper, we will introduce sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Stochastic Analysis

سال: 2010

ISSN: 0973-9599

DOI: 10.31390/cosa.4.4.06